Prepare by

VIGYAN ASHRAM
RURAL DEVELOPMENT EDUCATION SYSTEM
(विज्ञान आश्रम)

For

IBT Training – April 2012

<table>
<thead>
<tr>
<th>Dates</th>
<th>Version</th>
<th>Author</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/04/2012</td>
<td>0.1</td>
<td>Vigyan Ashrama, Fablab</td>
<td>Created document in Hindi</td>
</tr>
<tr>
<td>28/04/2012</td>
<td>0.2</td>
<td>Vigyan Ashrama, Fablab</td>
<td>Updated document with appropriate figures</td>
</tr>
<tr>
<td>28/05/2012</td>
<td>1</td>
<td>Vigyan Ashram, Fablab</td>
<td>Rearranged a few items</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>सस्ती, गुणवत्तापूर्ण हिअरिंग एड (low-cost, qualitative hearing aid)</td>
<td>3</td>
</tr>
<tr>
<td>प्रस्तावना</td>
<td>3</td>
</tr>
<tr>
<td>प्रश्न की त्यासी</td>
<td>3</td>
</tr>
<tr>
<td>क्या किया जा सकता है?</td>
<td>3</td>
</tr>
<tr>
<td>यंत्र और उसका तंत्र</td>
<td>3</td>
</tr>
<tr>
<td>एंप्लिफिकेशन (Amplification)</td>
<td>4</td>
</tr>
<tr>
<td>माइक्रोफोन (microphone, mic)</td>
<td>4</td>
</tr>
<tr>
<td>यंत्रकी रूप रेखा</td>
<td>6</td>
</tr>
<tr>
<td>परिप्रेक्ष्य</td>
<td>7</td>
</tr>
<tr>
<td>पुराऊंकी सूची तथा किंमत</td>
<td>9</td>
</tr>
<tr>
<td>जरूरी जानकारी</td>
<td>9</td>
</tr>
<tr>
<td>कुछ साध्य विश्लेषतायें</td>
<td>10</td>
</tr>
<tr>
<td>वाजरमें उपलब्ध उत्पादन</td>
<td>10</td>
</tr>
<tr>
<td>संदर्भ</td>
<td>10</td>
</tr>
</tbody>
</table>
सस्ती, गुणवत्तापूर्ण हिअरिंग एड (low-cost, qualitative hearing aid)

प्रस्तावना -
कान यह एक ही ऐसा ग्यानıklıय है, जिसे हम मजी के मुनाबिक बंद या शुरू नहीं कर सकते हैं। कानपर आवाज पड़ी तो यह सुनने का अलावा हम कुछ नहीं कर सकते! यद्यपि, सुनने कि क्षमता हर किसी कि समान हो यह जरीय नहीं। हमें कई लोग है जिन्हें शायद सुनाई बिलकुल नहीं देता। कुछ लोग है जिन्हें औसतसे कम सुनाई देता हूँ तथा कुछको काफी कम। वैसे तो कम सुनाई देने का प्रश्न छोटी से लेकर बड़ीतक, उम्रके किसीभी पाडाबंग दिखाई दे सकता है। इसके कारण संसर्ग, रोग या पैदाईशी हो सकते है।

इस दस्तावेजमें, कम सुनाई देने का यह प्रश्न, तंत्रज्ञानके आधारसे, भारतीय आर्थिक-सामजिक स्थितिमें जोड़नें का प्रयास किया गया है। पढने-समझनेमें आसानी और अखंडता हो इससे, यह दस्तावेज, उदाहरणके तौरपर हमारी पाठशालाओंके बात करता है।

प्रश्न की व्यासी -
स्कूली व्यवस्थामें गुणात्मक तथा संसाधनविषयक प्रश्नोंके आधारसे, बच्चे जिस पर्यावरणमें रहते हैं, उसके भेदमें तथा उनका आरोपण यह मुद्देबं काफी मानवे रखते हैं। शिक्षककी बात समझनेमें, वाकी गुणात्मक मुद्देबं अलावा, बच्चोंके देखने-सुननेके क्षमताभी अपनी जगह बनाए हुवे हैं। प्रायः हमने देखा है कि कक्षामें लिए बैठनेवाले बच्चों अलग अलग कारणोंके वजहसे, पदार्थों पिछे रह सकते है। कई बार शिक्षककी आवाज न सुनाई देना या निष्पक्षः कम सुनाई देना ऐसे कारणोंके जजसे पढाईसे ध्यान उठ सकता है। हमने यह जाना है कि बहुतांश बच्चोंको इस समस्याका सामना करना पडता है।

क्या किया जा सकता है?
ऐसी व्यवस्थामें जो बच्चे सुननेकी कम क्षमता रखते हैं या शिक्षककी आवाज उनतक नहीं पुंछती है, उनके लिये सस्ते और आसान यंत्र (machine)काफी उपयोगी साबित रहेंगे। कोईभी पाठशालाअपनें बच्चोंके लिये ऐसे यंत्र बना सकती है। कोईभी ऐसी व्यक्ति जो ऐसे यंत्र बनाकर, कुछ एक मूल्य लेकर, सेवाके रूपमें देना चाहें, उसके लियें यह यंत्र, अवसर दिला सकता है।

यंत्र और उसका तंत्र
इस यंत्रके संकेत (circuit) की रेखा-आकृति आगे दिखाई गयी है। इसके पहले कि हम इस यंत्र को बनायें, कुछ मूलभूत तत्त्व, संकल्पनायें तथा व्याख्यायें देखते है।

सस्ती, गुणवत्तापूर्ण हिअरिंग एड
एप्लिफ़िकेशन (Amplification) -
कोई एक प्रारंभ (parameter) (उदा. वोल्टेज, कार्यांक, आवाज) का मूल्य बढ़ाने की प्रक्रिया। निचे दिखाई गयी रेखाकृति में 1 वोल्ट (Volt) वोल्टेज को 5 गुना बढ़ाकर दिखाया गया है। यह रहा एप्लिफ़िकेशन।
एप्लिफ़िकेशन करनेवाली प्रणाली एप्लिफायर (amplifier) कहलाती है।

आकृति - 1
उपर दिखाई गयी आकृतियों पहली तरंग और दूसरी तरंगों में आकार का फर्क स्पष्ट रूपसे दिखाई देता है।
इस फर्कके साथ ध्यानमें रखनेवाली एक और बात यह है कि इन तरंगोंकी प्रकृति (सांख्य, स्वरूप, pattern) एक जैसी है। इसका मतलब यह है कि एप्लिफ़िकेशन के प्रक्रियामें बिना स्वरूप बदले, प्रारंभका मूल्य बदल जाता है।
उदाहरण के तौरपर, अगर ध्वनी तरंगोंके साथ यह प्रक्रिया अनंत तक नियंत्रण करते रहे और यदि तरंगोंका स्वरूप ना बदले, तो यह 'नयी' - एप्लिफ़ाइड - तरंगें दूरतक सुनाई देगी। यह उदाहरण तो हम, भारतमें किसीभी उत्सव, मोर्चा, शादी या श्रद्धांजलिपरभी देखते है।

माइक्रोफोन (microphone, mic) -

आकृति - 2
मायक्रोफोन यह एक electronic उपकरण है, जो ध्वनीतरंगों को ग्रहण (input) करके विद्युत (electrical) तरंग निर्माण (output) करता है। यह विद्युत तरंगें, मायक्रोफोनपर पड़नेवाली आयामकही एक रूप होती है, तथा आयाममें होनेवाले सारे बदलाव इन विद्युत तरंगोपर परिणाम करते हैं।

उपरोक्त जानकारी के बाद मुख्य उपकरण कैसे बनता है यह देखते हैं। अबतकी जानकारी के हिसाबसे अगर वातावरणमें मौजूद ध्वनियां, मायक्रोफोनपर पड़े तथा मायक्रोफोनसे निकली विद्युत लहरें (जो कि आयामकही एक रूप होती है) हेडफोनको दि जायें तो हेडफोनसे हम आयाम सूत पायेंगे।

आकृति - 3

यह आकृति, ध्वनीतरंगो का विद्युत रूप दिखाती है। एक मायक्रोफोन जब एक ओसिलोस्कोप (Oscilloscope) को लगाया गया तो वातावरणमें मौजूद ध्वनियां ओसिलोस्कोपपर ऐसी दिखायी दी।

उपरोक्त जानकारी के बाद मुख्य उपकरण कैसे बनता है यह देखते हैं। अबतकी जानकारी के हिसाबसे अगर वातावरणमें मौजूद ध्वनियां, मायक्रोफोनपर पड़े तथा मायक्रोफोनसे निकली विद्युत लहरें (जो कि आयामकही एक रूप होती है) हेडफोनको दि जायें तो हेडफोनसे हम आयाम सूत पायेंगे।

आकृति - 4 (अ)
सुननेमें तो यह बात ठिकही लगती है। मगर वाणिज्यमें ऐसा नही होगा। माइक्रोफोनसे निकलनेवाली
बिज्ञत तरंगे (जो उसपर पडनेवाली आवाजकारी स्थानीयता होती है) काफी कम ताकतवाली (signal strength)
होती है। इनकी ताकत इतनी कम होती है कि वह किसी बड़े ध्वनिकेप (speaker) या छोटेसे
हेडफोनको दि (input) जार्य तो कुछ सुनायी नहीं दें।

यहीपर बात होनी चाहिए एंप्लिफायर (amplifier) कि।

आकृति - ५

माइक्रोफोनसे निकली हुई (output) बिज्ञत तरंगे एंप्लिफायर के द्वारा एंप्लिफायर (strengthen) की जाती है
व हेडफोनतक पहुंचायी जाती है। हेडफोनतक पहुंचानेसे पहले यह तरंगें (Signal) १०० या २०० सुनाय से
एंप्लिफायर की जाती है।

इस पाडावपर एंप्लिफायरको विस्तारसे देखनेकी जरूरत है। यहीसे उपकरण बनानाची हम शुरू करेंगे।

चंतकी रूप रेखा

तरंगोकी (signal) ताकत (strength) बढ़ानेवाला एंप्लिफायर IC (integrated circuit) के रूपमें बाजारमें
उपलब्ध है। इस एंप्लिफायरको ओप-एंप (Op-Amp) कहते है। इसका मतलब है - ओपरेशनल
एंप्लिफायर (Operational Amplifier)। यह एक इस्तेमालके लिये तयार (ready to use) बना हुआ
एंप्लिफायर होता है जिसकी सहायतालसे कम खर्चेमें और कम समयमें उपकरण बन सकतें है। इस
उपकरणके लिये LM358 यह Op-Amp इस्तेमाल किया जायेगा। LM358 यह IC बाजारमें र. ५/- के
आसपास मिलती।

८ पैरोकी यह IC, अक्सर आवाजसे संबंधित इलेक्ट्रॉनिक उत्पादनोंमें इस्तेमाल की जाती है। आगे

सस्ती: गुणवत्तापूर्ण हिअरिंग एड
दिखाई गयी आकृति (circuit diagram) उपकरण विस्तारसे दिखाती है।
यह सर्किट LM358 को इस तरह से इस्तेमाल करता है कि मायक्रोफोन से निकली विद्युत तरंगों लगभग १०० गुना ताकतवर (amplify) बनायी जाती है।

आकृति - ६

परिप्रेक्ष्य -
इस आकृतिसे दिखाये गये इलेक्ट्रॉनिक भाग (components) किसी एक गणित/तत्त्व के आधारपर तथा दिखाये गये है। इसके बारे में जानकारी लेते हैं।
एक मायक्रोफोन का output (बाहर निकलती विद्युत तरंगें) काफी कम ताकतवर होती है। अगर किसी तरीके से हम इसका नाप ले पायें तो यह कुछ २० मिली-वोल्ट्स (mV) के आसपास होती है। यह तथ्य आगे दिखाये गये छायाचित्रों में दिखता है। दूसरा तथ्य यह है कि आवाज सुनने के लिये, किसी हेडफोनको २ वोल्ट (V) मूल्य या उससे ज्यादा input देना पड़ता है।

सस्ती, गुणवत्ता पूर्ण हिअरिंग एड
तो इसका मतलब यह रहा कि मायनकोण का output लगभग १०० गुना बढ़ने के बाद हेडफोन ने आवाज सुनायी देगी। उपरोक्त कारणों की वजह से एंप्लिफ़ायर यहाँ पर इस्तेमाल होगा।

आकृति - ७ में दिखाया गया सर्किट कुछ इलेक्ट्रॉनिक पुर्जों का इस्तेमाल करता है।

\(R_5 \) विद्युत रोधक (resistor) का काम मायनकोण को अतिरिक्त विद्युत प्रवाह (electrical current) से संक्षण देता है। इसके अनुसार जमील मायनकोण हमेशाएँ लिये खराब होते का डर बना रहेगा।

\(C_1 \) और \(R_2 \) दोनों मिलकर एक छलनी (filter) बनाते हैं, जो सिर्फ AC तरंगों को अगर बढ़ते देता है। वातावरण में मौजूद आवाज AC प्रकारक की होती है। जब भी आवाज संबंधीत प्रकल्प या उत्पादन के बारे में बात करते है तो DC प्रकारकी तरंगों को छान दिया जाता है।

\(R_3 \) और \(R_4 \) यह तय करते हैं कि ध्वनी तरंगों से बनी हुई विद्युत तरंगों की ताकत कितने गुनाह से बढ़ायी जायें। तो अगर कोई तरंग १V से ५V तक बद जाये तो एंप्लिफ़ायर का Gain (गेन, वृद्धी) ५ कहा जायेगा। \(R_3 \) और \(R_4 \) का निम्नलिखित सूत्र एंप्लिफ़ायर का Gain पक्का करता है।
○ Gain = 1 + (R4/R3) = 1 + (100KOhm/1KOhm) = 101

आंतर्निक R5 जो कि एक Variable विध्युत संचेतक है, वह अवाजकी मात्रा बढ़ाने और कम करने के लिये इस्तेमाल किया गया है।

पुर्णकी सूची तथा किमतें -

<table>
<thead>
<tr>
<th>वस्तु</th>
<th>संख्या</th>
<th>दर (रु)</th>
<th>किमत (रु)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electret Microphone</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Headphone</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>LM358</td>
<td>1</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>100 K Ohm</td>
<td>2</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>5 K Ohm</td>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>1 K Ohm</td>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>0.1 uF</td>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>1K Ohm (pot)</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9V Battery (6F22)</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4 pin IC Socket</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Multistrand Wire</td>
<td>1 मी.</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>General Purpose PCB</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

खर्च ~ ₹ 110/-

जरूरी जानकारी
इस दस्तावेज में प्रस्तुत किया गया प्रकल्प, 'Op-Amp ' इस मूलभूत संकल्पनापर निर्भर है। ऐसे तो आकृति - 7 के मुताबिक बनाया गया उपकरण काम करेगा, लेकिन 'Op-Amp' कि संकल्पना समझना लाजमी तथा अनिवार्य है, अगर ऐसे उपकरण नयी रूप-रेखा के साथ बनाने हो।
कुछ साध्य विशेषतायें -

इस उपकरण को कुछ और विकसित किया जा सकता है। जैसे कि -

1. मायक्रोफोन का हिस्सा और हेडफोन का हिस्सा एक - दुसरे से अलग रहेंगे और बिना तारके (wireless) जोड़ने संभव होगा।

2. एक और विशेषता आजमायी जा सकती है - ऐसे उपकरण का ध्वनि-विच्छेदन प्रक्रिया इस्तेमाल हो सकता है?

बाजारमें उपलब्ध उत्पादन -

ऐसे ती यहाँ दिखाया गया उपकरण उसकी ठेट उत्पयोगिता के बावजूद, काफी हद तक प्राथमिक है।

Hearing Aid यह व्यवसाय का उभरता हुआ महत्वपूर्ण विषय है, जिसमें निजी तथा सरकारी आरोपित के साथ अपनी जगह बांधते हुए है। भारतीय तदनांतर आरोपित अपनी इमारत बनाते हुए है।

निम्नलिखित सूची भारतीय कुछ उद्योगों जो जानकारी देती है, जो इस व्यवसाय बढ़ा समुद्र माने जाते है। इनके अलावा छोटे स्तरपर काम करने वाले आस्थापनपर्यंत है।

1. Seimens
2. GN Resound
3. William Demant Holding
4. Widex Indian
5. Starkey labs

संदर्भ -